The $100/24hr Human Genome!

It currently costs roughly $60,000 to sequence a human genome, and a handful of research groups are hoping to achieve a $1,000 genome within the next three years. But two companies, Complete Genomics and BioNanomatrix, are collaborating to create a novel approach that would sequence your genome for less than the price of a nice pair of jeans–and the technology could read the complete genome in a single workday. “It would have been absolutely impossible to think about this project 10 years ago,” says Radoje Drmanac, chief scientific officer at Complete Genomics, which is based in Mountain View, CA.

The most recent figures for sequencing a human genome are $60,000 in about six weeks, as reported by Applied Biosystems last month. (That’s down from $3 billion for the Human Genome Project, which was sequenced using traditional methods and finished in 2003, and about $1 million for James Watson’s genome, sequenced using a newer, high-throughput approach and released last year.) But scientists are still racing to develop methods that are fast and cheap enough to allow everyone to get their genomes sequenced, thus truly ushering in the era of personalized medicine…

The technology necessary to achieve a $100 genome is still at least five years away, says George Church, a geneticist at Harvard Medical School, in Boston, and a member of Complete Genomics’ scientific advisory board. “But [it’s] coming from a company that has an almost-as-good technology coming out this year.”

Both Drmanac and Boyce-Jacino say that one of the biggest advantages of their technology will be the ability to sequence very long strands of DNA. The newest sequencing technologies in use today read DNA in fairly short spurts, from about 30 to 200 letters, which are then stitched together by a computer. This approach works well for some applications, such as resequencing a known genome. But a growing number of studies suggest that the small structural changes in DNA, such as deletions or inversions of short sequences, play a significant role in human variability, says Jeff Schloss, program director for technology development at the National Human Genome Research Center, in Bethesda, MD. “Those are much harder to pick up with short reads.”

Longer reads will also allow scientists to look at collections of genetic variations that have been inherited together, known as haplotypes. This kind of analysis can determine if a particular genetic variation has been passed down from the individual’s mother or father. Recent research suggests that in some cases, maternal or paternal inheritance can impact the severity of the disease. With new tools to better track inheritance patterns, scientists may discover that this phenomenon is more common than previously thought. “That’s one reason we’re hoping that several of the emerging methods will allow long reads,” says Schloss.

————————————–

Thanks to TechnologyReview.com for a great article!  Read the full article here.

Its a Brave New World My Friends

THE SINGULARITY IS NEAR!

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: